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Summary. In selected populations, families superior for 
the selected trait are likely to contribute more offspring to 
the next generation than inferior families and, as a conse- 
quence, the rate of inbreeding is likely to be higher in 
selected populations than in randomly mated popula- 
tions of the same structure. Methods to predict rates of 
inbreeding in selected populations are discussed. The 
method of Burrows based on probabilities of coselection 
is reappraised in conjunction with the transition matrix 
method of Woolliams. The method of Latter based on 
variances and covariances of family size is also examined. 
These methods are one-generation approaches in the 
sense that they only account for selective advantage over 
a single generation, from parents to offspring. Two-gener- 
ation methods are developed that account for selective 
advantage over two generations, from grandparent to 
grandoffspring as well as from parent to offspring. Predic- 
tions are compared to results from simulation. The best 
one-generation method was found to underpredict rates 
of inbreeding by 10-25%, and the two-generation meth- 
ods were found to underpredict rates of inbreeding by 
9-18%.  
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Introduction 

In a random mating population and in the absence of 
differences in viability and fecundity, all families have 
equal probabilities of contributing offspring to be parents 
of the next generation. In a population undergoing selec- 
tion, families superior for the selected trait will contribute 
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more offspring to the next generation than inferior fami- 
lies and, as a consequence, the rate of inbreeding is higher 
in selected populations than in randomly mated popula- 
tions. The parents of superior families are said to confer 
a selective advantage. The mean level of inbreeding in a 
given generation t (FJ and the rate of inbreeding [AF, 

defined as ( F t - F  t_ 1 ) / (1-  F t_ 1 )] can easily be calculated 
from pedigree information after selection has occurred, 
but prediction of inbreeding rate in the planning stage of 
a breeding programme has proved to be difficult. Fre- 
quently, advantages of new breeding schemes are dis- 
cussed solely in terms of responses to selection, with little 
regard to the effect of selection on inbreeding, and the 
assumed rate of inbreeding is appropriate only for ran- 
dom mating populations, therefore making objective as- 
sessment of innovations difficult. 

Robertson (1961) was the first to discuss the predic- 
tion of rates of inbreeding in selected populations of full- 
sib families (equal numbers of males and females). Al- 
though his prediction has been found to severely 
overpredict rate of inbreeding in simulated populations 
undergoing intense selection or (mass) selection for traits 
with high heritabilities (Hill 1985), his approach was pio- 
neering in that it attempted to account for the complete 
consequences of selective advantage from ancestors to all 
their descendants. Wray and Thompson (1990) developed 
the approach of Robertson (1961) to provide formulae of 
good predicitve value. Their approach is appropriate for 
populations in which the numbers of males and females 
differ, although the resulting method is recursive and 
complex. Therefore, a need exists to examine potentially 
simpler approaches. 

Burrows (1984a) presented a prediction for rate of 
inbreeding by estimating the probability of pairwise 
coancestry of selected individuals after a single genera- 
tion of selection. The method includes higher order terms 
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that  were ignored  by Rober t son  (1961), bu t  it considers 
only  the selective advantage  from paren t  to offspring. 
Wool l iams (1989) presented a me thod  that  incorpora tes  
the same principles as Burrows (1984a, b) into a t ransi-  
t ion  matr ix  approach.  Us ing  a drift var iance  argument ,  
Lat ter  (1959) derived an expression for rate of inbreed ing  
in terms of var iances and  covar iances  of family size. Al- 
though  this approach  was no t  derived for the selection 
case, it has immedia te  appeal  here because of the impact  
of selection of variances of family size. 

We reappraise  the me thod  of Burrows (1984 a, b) and  
the me thod  proposed  by Wool l iams (1989), with part icu-  
lar emphasis  on the predict ion of coselection of sibs. 
These methods  only  consider  the prol i ferat ion of l ineal  
relatives in a single generat ion,  therefore the deve lopment  
of these to account  for prol i ferat ion over two generat ions  
of selective advantage,  i.e. from grandparen t s  to grandoff-  
spring, is considered. A close re la t ionship  exists between 
the t rans i t ion  matr ix  me thod  a n d  the me thod  of Lat ter  
(1959), and  a two-genera t ion  formula  in  terms of vari-  
ances of family size is also derived. Final ly,  the methods  
are compared  to results from simulat ions.  

Assumptions and notation 

Rate of inbreeding is assumed to apply to genes that are neutal 
with respect to the selected trait and that are unlinked to genes 
controlling the selected trait. However, if the selected trait is 
assumed to be controlled by many unlinked loci, each of small 
additive effect (the infinitesimal model), then the rate of inbreed- 
ing at selected loci is expected to be the same as at neutral loci. 
Selected parents are assumed to be mated at random. Genera- 
tions are assumed to be nonoverlapping. 

M and F denote the total number of males and females 
available for selection per generation, and m and f (not sub- 
scripts) denote the number selected. The letters m and f are used 
in subscripts in the text as labels for males and females. Let c~ 
denote the proportion selected so that % = m/M and a s -  f /F .  
Throughout, x and y are used as subscripts for a single sex, 
where either m or f could be appropriate; similarly, X, Y each 
represent either M or F, x, y represent m or f and c%, % represent 
either e,, or ~j.. Subscripts i and j are used to describe families 
and, where both are used together, i and j are assumed to index 
male and female parents, respectively. Thus m u denotes the num- 
ber of males selected from the full-sib family of sire i and damj .  
In addition, nx represents the number of individuals of sex x 
available from each family for selection. Asymptotic inbreeding 
rate is denoted by AF and effective population size by N~ = 1/2 AE 
Finally, qS(a~) denotes P(w_<a~), where w is any normally dis- 
tributed random variable and ~(a i,  a2; ~) denotes P(wi<_a i, 
w 2 < a 2 )  , where w i and w z are bivariate normal random vari- 
ables with correlation ~. 

Prediction of inbreeding by considering the probability 
of identity by descent 

7he method of  Burrows 

Before generalising methods based on identity by descent, it is 
useful to review the methods of Burrows (1984 a, b). The effective 

population size was defined by 1/Ne=Qx, where QI is the prob- 
ability that a pair of genes randomly chosen from distinct, select- 
ed individuals (in generation I of selection) were contributed by 
the same inividual of the previous generation. Q1 defined here is 
equivalent to the Q defined by Burrows (1984b). This definition 
is equivalent to the inbreeding effective size of Ewens (1982). The 
inbreeding coefficient of progeny obtained by random mating of 
the selected individuals is 0.5 Qr (assuming no existing inbreed- 
ing). Burrows (1984a) shows that with full-sib families of fixed 
size n x and random mating his definition reduces to that of 
Wright (1931), which assumes Poisson distribution of family size, 
N e = 4 M F / ( M + F )  as n x ~ oo. The condition of large family size 
is expected, since family size of chosen individuals follows a 
hypergeometric distribution when available family size (n~) is 
constant but, as n~ increases, the Poisson distribution becomes 
a good approximation to the hypergeometric distribution. 

The method of Burrows recognises no sexual dimorphism in 
the selection process and each selected individual may act as 
either male or female. This does not adequately account for sex 
differences in animal selection programmes, and alternative 
methods to account for this are addressed in the following sec- 
tions. Qt depends on the probability of coselection of full and 
half sibs in the notional gene sampling from among the selected 
individuals. When indices of relatives are uncorrelated (i.e. when 
h 2 = 0 and family indices are not involved), selection is at random 
and these probabilities are obtained from the hypergeometric 
distribution. Let x u be the number of individuals (of sex x) 
selected from family (i,j) of size n~. Then the probability of 
selecting two full sibs is given by 

[-xU(x u -  1)-I 
Z E  - -  

and 
x ( x -  1) n~(nx- 1 ) 

E [xu(x u -  1)] = X ( X -  i) (2) 

The probability of selecting two sibs from a common sire is given 
by 

x tx - - l l [ i , ]  i j~:j' 

The difference between Eqs. 3 and I is the probability of selecting 
two paternal half sibs. The evaluation thus requires the further 
result, 

x ( x -  t) n~ 
E[xlJ xij']-- X(X-- t) (4) 

However, when correlations between index values of half 
sibs (Qns) and of full sibs (Qvs) exist then the estimation of Qr is 
more complex. If the selection indices of sibs follow a bivariate 
normal distribution, then Qs can be approximated by bivariate 
normal probabilities. The approximation requires the following 
result, which is more general than that of Burrows (1984a, b), 
and this generality will be used later when considering two sexes. 

Consider a single family containing two groups of size nt 
and n z. Assign an index G to each individual, Gkz(k=t, 2; 
l= 1 . . . .  nk) normally distributed, so that 

E[Gkt]=O, E[G~z]=I, E[Gu Gkv]=ek 

and E[GttG2v]=O, where 0-<0<0k. 

Define T~ as the number of individuals of group k whose 
index exceeds a threshold a k. The joint probability generating 



function, M(0, ~b) of T 1 and T 2 for p , ~ = P ( T l = u ;  T2=v) is, 
nl n2 

M(O, q~)= ~ 2 P.~ O" ~=E~,~[{~(b~)+O[1 - ~(b~)]} "~ {45(bz) 
1 1 

a k - -  Z k 01/2 
+ ~ [1 - -  ~ (b2)]}n2], w h e r e  b k - (1 - 0k) 1/2 f o r  k = 1, 2 a n d  z I a n d  

z 2 are distributed as a standardised bivariate normal distribu- 
tion with correlation coefficient 0~-1/2 0 021/2 . 

The following probabilities can then be derived: 

E[rk]=nk(1 --~(ak)) 

E [Tk(T k -  1)] = nk(n k -- 1) (1 -- 2 q5 (ak) + q~(ak, a k; Ok)) (5) 

E[T1 T2] = n l  n2(1 - -~(al ) - -q~(az)+q)(al ,  a2; 0)) 

If the a k are considered as selection thresholds based on the Gkz, 
it can be seen that the above has some similarities to the selection 
process. The key difference is that there are no constraints on the 
sum of the 'T' random variables across the two groups or across 
a number of families, as there ae in the selection process, where 
only a predetermined total number are selected. Exact expres- 
sions for these quantities can be derived using order statistics, 
but these are very complex. 

To use the formulae 5 in the method of Burrows (1984a, b), 
assume the population has a factorial or nested mating structure 
involving full and half sibs (full-sib family size G)- Define a 
common threshold a~ and let the correlation of full-sib family 
members be 0FS and amongst half sibs r 0Hs can vary accord- 
ing to whether the common parent is the sire of dam, but it is 
only necessary to consider the former case. Define Tij analogous 
to the T k as the number of individuals in family (i, j )  greater than 
the threshold G ,  and apply the following conditions. 

(A) for n~ and c G constant and for all 0_< 0iJs <-0Fs, then 

1 
- Z T ~ ; ~  G as X ~ o o ,  
X ij 

(B) as 0vs ~ 0 (and, hence, 0HS ~ 0) 

E [xij (x i j -  1)] = k 1 E [Tij (Ti j -  1)] 

E[x~j x~j,]=k2 E[T~j T~;], 

which can be used to derive G,  kl and k 2, where k 1 and k 2 are 
constants. 

Substituting Eq. 5 into Eqs. 2 and 4 gives the results of 
Burrows (1984b). Formulae I and 3 can be used to derive an 
approximation of coselection probabilities and, hence, Q~ for all 
0ns and r For  example, the probability of coselecting full sibs 
is 

1 (n~-~) 
, -  ~ , ~ . E [ x i j ( x i j - - 1 ) ] ~  2 . . . .  (2cG+~(a~,ax;OFS)--l) 

X [ X - -  1) i, j ~x t A -  1) 

(2 a~ + ~b (G, ax; r 1 
S ~x 2 ' 

for large G,  where s is the total number of full-sib families. 

Methods using transition matrices 

Wooliams (1989) presented generalisations of the recurrence re- 
lations of Wright (1931) using transition matrices to describe 
P~y(t), defined as the probability that the genes chosen from 
distinct selected individuals of sex x and y in generation t are 
identical by descent. Under three assumptions, the strongest 
being that the selective advantage of a selected individual over 
others selected is not inherited in any part by its offspring, then 
P,~r (t), P,,m~(t) and Pff (t) could be described in terms of Pml ( t -  i), 
P,,r Prom(t--l) and P;r An equivalent derivation 
substitutes P,, ( t - 1 )  for P,,f ( t -2) ,  where P,, ( t - 1 )  is the proba- 
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bility that two genes sampled from a single individual of either 
sex are identical by descent. The coefficients of these relation- 
ships were defined by the probabilities that the two individuals 
sampled had the same maternal or paternal parent (see Wool- 
liams 1989). Then, if h't=[1-P,.,o(t ) 1-P,.r 1--Pf f( t )  
1-P..(t)],  h t=A h,-1 where A is a matrix of form, 

r i 1/2 r 2 (1--2rl--2r2)/2~ 
r 3 1/2 r 4 (1--2r3--2r4)/2 

1/2 r 6 (1--2rs--Zr6)/2 (6) 

1/2 0 0 

where 0<r~< 1/4 for all i. AF is described by the behaviour of 
Pmi(t), which is associated with the largest real eigenvalue of 
A ( X m a x )  , with A F ~  (1--2max). The equivalence of the matrix A 
given in Eq. 6 and that of Woolliams (1989) can be seen by noting 
that the latter is of the form D A D -1, where D is a diagonal 
matrix and thus the two matrices have identical eigenvalues. The 
existence and bounds of 2m, x are shown in Appendix I, together 
with proof that P,,f(t) is O(,~max). 

As in the method of Burrows (1984a, b) the coefficients of 
transition matrices require probabilities of coselection of full sibs 
and half sibs when sampling two males, two females and one 
male and one female. Woolliams (1989) generated these by 
Monte Carlo simulation, but this gives little indication of their 
behaviour in general terms. Using Eq. 5 these probabilities can 
be approximated by bivariate normal probabilities. For (male, 
male) and (female, female) sampling, the formulae derived in the 
last section for coselection probabilities of full sibs and half sibs 
can be used after appropriate substitution of parameters. For 
(male, female) sampling it is necessary to note that condition (A) 
defines two thresholds % and a:- and to add a further condition, 
namely, 

(C) as 0FS (and, hence, QHs ~ 0 for male and female pairs, 

E[mij fq] =ka E[Tm,j Tf.] 

E[mij fij,]=k4 E[Tm,~ TS,j,] . 

Since the male and female involved in the notional gene sam- 
pling do not contribute to the same limit on numbers selected, 
the moments for 0FS = 0 are of binomial form rather than hyper- 
geometric, with the result that the c o n s t a n t s  k 3 = k 4 = 1. In addi- 
tion, % and ar are defined by �9 (aT,) = 1 - e,, and ~b (as) = I - G" 
By noting 

all coselection probabilities required for constructing the transi- 
tion matrix can be calculated. For example, the probability of 
coselection of full sibs when sampling a male and female is given 
by 

1 (% + a I + ~b (%,  af  ; 0FS) -- 1) - ;  Z E [m, f,j] ~ 
m J i , j  S O~ m ~ f  

where s is the number of families and Ovs is the correlation of 
indices between male and female full sibs. 

The expressions of coselection probabilities derived so far 
can be simplified. Consider an individual of sex x. The probabil- 
ity of coselecting a relative of given degree of sex y is a product 
of a function of selection proportions and their index correlation, 
i.e. (c G + ey + q~(G, ay; 0 ) -  1)/(e~ c~y), and a function of family 
sizes, where the latter is the ratio of [number of relatives of sex 
y] and [number of individuals of sex y (excluding self if x = y)] 
where the numbers are those prior to selection. For c%= ~y, the 
function of the proportions is equal to the reciprocal of the 
R(cq 0) of Burrows (1984a). 
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A comparison of Burrows' method and transition matrix methods' 

The method of the last section explicitly caters for two sexes with 
differences in their treatment, whilst Burrows' method does not. 
Woolliams (1989) gave examples which showed that the methods 
are not, in general, equivalent. Furthermore, in random selection 
with son replacing sire and daughter replacing dam in a hierar- 
chical mating structure (such as that considered by Gowe et al. 
1959), application of Burrows' method gives AF = 1/8 M when 
F>>M>>I, whilst the method in the previous section gives 
AF = 3/32 M as shown by Gowe et al. (1959). Q~ can be written 
in terms of the elements of matrix A, where A u is the (i,j) element 
of A, 

1 ~ i[- M ( M -  1) 2 M F  
~'  = ~[_iM +-~  (--b--+~ - 1) A,4+ (M+F) (M+F- I) A~ 

F(F-1) A q 
+ ( M + F ) ( M + F - 1 )  34j. 

However, when the two sexes are selected on the same index 
with nm=nl=nx, % = e s = e ~ ,  and M = F = X ,  the two methods 
are asymptotically equivalent as X ~ oo for constant c~. In these 
circumstances Pm,,(t)=Pis(t) and the matrix A is of the form, 

1/4-q5 6/2 1/2 1/4-0 6/2 q5 6 
1/4- 6/2 1/2 1/4- 6/2 
1 /4 - r  ~/2 1/2 1/4-4 ~/2 q5 

0 1/2 0 0 
where 6 is the probability of sampling genes that were from the 
same individual of generation t - 1 ,  when sampling one gene 
from an individual of each sex in generation t, and ~b 6 is the 
similar probability when sampling one gene from two individu- 
als of the same sex. Since each sex is treated similarly, ~b _< 1, and 
the characteristic equation of the transition matrix is 

C ( , t ) = ; ~ * - ( 1 - 4  6) ; ? -  1 2 1 1 5r + ~ (  - 4 , ) z  

Using Newton-Raphson approximation with an initial estimate 
of 1, for small 6 (ignoring terms of 62 or higher) a maximum 
root of 1 - (1  + q5)6/4 is obtained. This gives A F = ( I  +~b)6/4. 

Using the definition of the section describing Burrows' method 
[(x- l) 4,+x] 6 

A F -  . Thus, as x --+ 0% for constant cq the two 
2 ( 2 x - 1 )  

definitions become asymptotically equivalent. 

Comparison of the Latter-Hill equation 
and transition matrix methods 

Expressions for inbreeding rates in terms of variances and co- 
variances of family size were developed by considering the vari- 
ance in changes of gene frequency by Latter (1959) for discrete 
generations and Hill (1972, 1979) for overlapping generations, 

1 2 M M 2  2 

1 2 F 

where L is the generation interval, G2y (,> is the variance in family 
size of offspring of sex y contributed to the next generation from 
parents of sex x and ~ . . . .  j.(~) is the covariance in the family size 
of male and female offspring contributed by parents of sex x. The 
subscript (1) emphasises that these are variances and covariances 
taken over a single generation. Equation 7 was derived for the 
situation where variation in family size is the result of nonheri- 
table causes. In the selection case, the drift variance derivation 

must be interpreted as the variance in change of gene frequency 
at a locus neutral with respect to the selected trait. 

Variances of family size can be predicted involving argu- 
ments similar to those for probabilities of coselection presented 
earlier. In fact, the elements of the transition matrix defined in 
Eq. 6 can be written in terms of variances of family size. From 
drift variance by Eq. 7 in terms of the elements in Eq. 6 

1 F ( M - - 1  ~ F - - I  AF: ~L \~ )A , ,+2A~++(~ )A~ ,  1. 
In randomly selected, randomly mated populations of constant 
size, each generation, the rate of inbreeding calculated from drift 
variance and identity by descent arguments differ only in second- 
order terms (Crow and Kimura 1971). However, the formulation 
given here demonstrates an intrinsic difference in the respective 
measures. The characteristic equation for the transition matrix 
treats r 1 (r6) differently from r 2 (rs) , but in the drift equation 
above only the sums of r 1 + r  2 and r s + r  6 are important. In 
nonrandom selection these differences can be of significance. For 
example, consider a population with M males each mated at 
random to M females, with each female having one male and M 
female offspring. If selection rules are imposed such that all M 
male replacements are chosen from one male parent, and one 
female replacement is chosen from each female parent, then 
predicted rates of inbreeding from the transition matrix and 
Latter-Hill methods are 0.0249 + 0.0520/M and (M + 1)2/32 M g, 
respectively. If, on the other hand, selection rules are imposed 
such that one male replacement is chosen from each male, but all 
female replacements are chosen from a single male, then the two 
rates of inbreeding are 0.0312 + 0.0665/M and (M + 3)/32 M. As 
M -+ 0% the Latter-Hill predictions are identical for the two 
scenarios at 0.0313, but the transition matrix predictions differ 
by 25% at 0.0249 and 0.0312. This example is perhaps extreme, 
but it demonstrates that, for selected populations, identity of the 
transition matrix and Latter-Hill methods are not guaranteed. 

Two generation methods 

The methods presented so far account for only one conse- 
quence of selection on inbreeding, namely, the increased frequen- 
cy of selecting sibs. The second consequence of selection on 
inbreeding, namely, the influence of a superior ancestor (older 
than parent) on the probability that his descendants are selected, 
is ignored, and these methods are therefore likely to underpre- 
dict asymptotic rates of inbreeding. More offspring are likely to 
be selected from a genetically superior parent than from a genet- 
ically average of genetically inferior parent. However, more grand- 
offspring are likely to be selected from a genetically superior 
grandparent for two reasons. Firstly, the grandparent was genet- 
ically superior as a parent and has already contributed more 
offspring, and therefore has more grandoffspring available for 
selection. Secondly, the grandoffspring have inherited superior 
genes from the grandparent, and so are more likely to be selected 
than their contemporaries with average or inferior grandparents. 

In this section, we attempt to account for the influence of 
grandparents on the selection of their grandoffspring, as well as 
the influence of parents on the selection of their offspring. Firstly, 
the transition matrix method is extended to two generations and, 
secondly, the variance of family size method of Latter (1959) and 
Hill (1972, 1979) is extended to include variances of family size 
over two generations. 

Two-generation transition matrix method 

Considering the relationships over two generations, individuals 
can be considered to be full sibs, half sibs, half cousins, full 
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cousins, double half cousins, one-and-a-half cousins, double full 
cousins or unrelated at the grandparental level. The probabilities 
of selecting a gene identical by descent, when sampling two 
males, two females or a male and a female can be related to the 
same probabilities in generation >2 via a transition matrix, B, 
analogous to A the one-generation method. AF is estimated by 
(1 -2,1~/~,), where 2ma x is the largest real eigenvalue of B. Estimat- 
ing the elements of B is more complex than for A, and perhaps 
is more easily accomplished using simulation. Under random 
selection B = A 2. 

Two-generation variance of family size method 

The drift variance method of Latter (1959) and Hill (1979) can 
be extended to relate rates of inbreeding to variances of 
family size from grandparents to grandoffspring, as well as 
from parents to offspring. The same assumptions as for the 
one-generation method apply but, in addition, it is assumed that 
the variance of change in gene frequency over two generations 
(V(6~)) can be expressed as V(qz-qo)=V(q2-ql+ql-qo)  
=V(qz-ql)+V(ql-qo)~2q(1-q)/2Ne, where qt is the gene 
frequency in generation t and q0 = q. hnplicit in this assumption 
is that there is no covariance between changes in gene frequency 
over the two generations and that V (q2 - q~) = V (q 1 - qo), which 
are conditions that may be violated in selected populations. 

In the one-generation derivation, variance of change in gene 
frequency can be attributed to two types of sampling processes, 
namely, sampling between parents and sampling within het- 
erozygotic parents (the 2's, which are the first elements in the 
square brackets of Eq. 7, are attributed to the latter cause). In the 
two-generation derivation, variance of change in gene frequency 
can be attributed to three types of sampling, sampling between 
grandparents, sampling within heterozygous grandparents and 
sampling within heterozygous parents. Details of the derivation 
are presented in Appendix II and the resulting expression for 
rate of inbreeding is 

1 2 M M 2 
A F (T 2 

2 ~fm, ff(2) -[- M 0-~m (2) + 256FL a::(2) + 2 

] 2 M 2 
-}-128Mg[Gmm(1)-l-2(m) G . . . .  f (1)-}-( f ) 0"2f (1) 1 

+ ~ aff(1 ) +2 fTfm, ff(1) -~ ~ O'~m(1 ) 

1 1 
+ 1 ~  + 16 e L ,  (8) 

where the variance and covariance terms have the same interpre- 
tation as in Eq. 7, except that the subscript (2) now represents the 
variance in family size from grandparents to grandoffspring. For 
example, a~m (2) is the variance in family size of male grandoff- 
spring from male grandparents, which can be written as 

a2m(2) = agm,. + agf,. +2~  . . . . .  S,.' 

where a~,,m and a2:,, are the variances in family size from male 
grandparents to male grandoffspring via male and female off- 
spring, respectively, and a . . . . .  :,, is the covariance between 
them. Under random selection and Poisson distribution of fam- 
ily size, Eq. 8, like Eq. 7 reduces to Wright's rate of inbreeding 
of 1/(8 ML)+ 1/(8 FL), and when equal numbers (as far as pos- 
sible) are chosen from each family, both equations reduce to 
3/(32 ML)+ 1/(32 FL), as expected (Gowe et al. 1959). The ele- 
ments of the two-generation transition matrix can also be ex- 
pressed in terms of variances of family size. 

Appl icat ions  and e x a m p l e s  

Parameters 

Inbreeding rate will depend on the amount  of genetic 
variat ion and the covariance of family members,  which 
will affect family size. The methods described reflect this 
dependence. However,  during the selection process such 
parameters  are not  constant. The additive-genetic varia- 
t ion will decrease with the initial generations principally 
through a loss of between-family variation. Provided that  
inbreeding is not  rapid, an  equilibrium will be at tained in 
which the loss of between-family variat ion is regenerated 
through Mendel ian sampling variance originating within 
families (Bulmer 1971). The genetic variances and covari- 
ances are not  equal to those in the initial generat ion nor  
are they in the same propor t ions  relative to each other. In 
particular,  correlations between relatives decrease and 
can be as little as half their initial values when h 2 is large. 
Therefore, there are two potent ial  sets of parameters  for 
use in one-generat ion formulae, initial and at equil ibrium 
(denoted Qo and 0e). In the examples, both  sets have been 
used for the one-generat ion transi t ion matr ix method 
and the method of Burrows (1984 a, b), but  only the equi- 
l ibrium parameters  have been used for the other methods.  

Probabilities of coselection 

Simulations were carried out to test the accuracy of 
the bivariate normal  approximat ions  to the coselection 
probabilit ies.  In the first instance, mass selection was 
simulated for M = 2 0 ,  and F = 2 0 ,  40, 100, 200 with 
n m = nf = 6. Since the approximat ion  was designed to be 
exact for index correlations of zero, the simulations used 
large correlations for demonst ra t ion  purposes with 
~us = 0.6 and ~OFs = 0.8 for both  sexes. Simulations are the 
result of 1,000 realisations of the selection process for 
each scheme, and the results are shown in Table 1. 

The approximat ion  can be seen to have good agree- 
ment  with the probabil i t ies  derived from simulation, with 
the exception of the probabi l i ty  of selecting two half-sib 
males when F =  100 and 200. There are two possible caus- 
es for this. Firstly, it may be due to the size of the prob-  
abili ty and, secondly, it may be the result of a bias in 
approximat ion  that  occurs when the number  of individu- 
als selected is less than the family size, e.g. for F =  100, 
20 males are selected and the half-sib family size for males 
is 30. 

Therefore, a second series of simulations was carried 
out in which there was only one degree of relat ionship 
amongst  family members (assumed to be of a single sex) 
and where the total  number  of individuals remained con- 
stant but  family size varied. The selection propor t ion  was 
kept constant  and intraclass correlat ion was varied. 
Three thousand realisations were carried out for each 
scheme and the results are shown in Table 2. I t  is clear 
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Table 1. The probabilities of coselection of full and half sibs when sampling selected individuals in a variety of schemes. All assume 
M=20, nm=n~.=6 with 0Hs=0.6 and 0vs=0.8 for both sexes 

Probability of coselection 

Full sibs Half sibs 

(m, m)" (m, f)a (f, f )"  (m, m) (m, f )  (f, f )  

F =  20 Simulation 0.154 0.178 0.154 0 0 0 
Approximation 0.157 0.186 0.154 0 0 0 

F =  40 Simulation 0.131 0.110 0.077 0.101 0.078 0.067 
Approximation 0.136 0.115 0.078 0.111 0.084 0.070 

F = 100 Simulation 0.102 0.057 0.031 0.237 0.143 0.107 
Approximation 0.115 0.054 0.031 0.328 0.161 0.112 

F =  200 Simulation 0.081 0.027 0.015 0.320 0.170 0.120 
Approximation 0.103 0.028 0.016 0.593 0.199 0.126 

" (m, m), (m, f )  and ( f , f )  denote notional sampling of two males, one male and one female and two females, respectively 

Table 2. The probabilities of coselection of family members 
when sampling selected individuals in a variety of schemes. As- 
sume a selection proportion of 0.1 

Scheme Correlation among 
family members 

Number of Family 
families(s) size(n~) 0.25 0.50 0.75 0.90 

25 4 Simulation 0.056 0.095 0.152 0.208 
Approximation 0.059 0.098 0.155 0.209 

10 10 Simulation 0.161 0.239 0.408 0.576 
Approximation 0.176 0.295 0.466 0.626 

4 25 Simulation 0.382 0.525 0.675 0.797 
Approximation 0.469 0.785 1.242 1.669 

sidered, and the total  number  of individuals available for 
selection. A heuristic argument  for c~* is that  as Q ap- 
proaches one, members of families become less and less 
distinct, thus selection becomes a two-stage process of, in 
the first instance, selection of a single family with a selec- 
t ion propor t ion  equal to c~*, followed by a random selec- 
t ion with selection propor t ion  c~/a*. As an example con- 
sider the scheme in Table 1, with M = 2 0 ,  F = 2 0 0 ,  where 
the probabi l i ty  of coselection of half-sib males is to be 
estimated. Each individual has 54 male half sibs and 
5 male full sibs, thus c~* =60/1 ,200=0.05 with ~ns=0.6,  
c~,,, =0.0367. Use of c (  in formulae gives the probabi l i ty  
of coselection as 0.345, close to the value of 0.320 estimat- 
ed by simulation. 

from Table 2 that  the major  problem in the approxima-  
t ion is a bias that  occurs when selection need only involve 
one family. The bias is sufficient to give probabil i t ies  
greater than one. The cause of this bias can be found by 
considering the derivat ion of the approximat ion.  Condi-  

tion (B) considers the limit as X ~ o% whilst n x and c~ x 
remain constant,  and this must imply that  the selection 
process involves many families. This condit ion becomes 
untenable when ~ ~ 1 and x < n  x. When Q = I ,  the 
approximat ion  to the probabi l i ty  of coselection for a 

( n x - l )  and this exceeds one when single sex yields ( X -  1) c~x 
(nx-1) 

~x-< ( x - l ) "  
We put forward a suggestion to overcome this prob-  

lem, namely, that  the value c~, used in the formulae where 
this problem is encountered is substi tuted by 

~'~-- (1 -Q)  ~x+Q max(e~, c~*), 

where c~* is the ratio of the family size, including all 
relatives of the same or higher degree to that  being con- 

Prediction of inbreeding by transition matrbc 
and variance of family size methods 

Predictions of rates of inbreeding derived from one- and 
two-generat ion transit ion matr ix and variance of family 
size methods were compared  to rates of inbreeding calcu- 
lated from simulation of populat ions  undergoing mass 
selection. A range of mat ing ratios (M = 20, F = 20, 40, 
100, 200) with three or six offspring of each sex available 
for selection from each dam was used. An individual 's  
phenotype was simulated as a sum of a breeding value 
and an environmental  effect. The breeding value was 
sampled from a normal  distr ibution with the mean being 
the average breeding value of its parents and variance 

~ ,  where ~, is the additive-genetic variance and �89 2 2. 

F is the mean inbreeding coefficient of the parents. 
The individual  environmental  component  was sampled 
from a normal  distr ibution with mean zero and vari- 
ance ~ .  A range of heritabilities cr~/(a~ + c% z) was con- 
sidered: 10 .6  , 0.1, 0.2, 0.4 or 0.6. Selected parents  were 
mated at random. The rate of inbreeding calculated 
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Table 3. Rates ofinbreeding(x 100)from simulation (AFs~m) and 
those predicted using Burrows (1984a, b) (AFB), one and two- 
generation transition matrix methods (AF1. T and AF2,~) and one 
(Eq. 7) and two (Eq. 8) generation variance of family size equa- 
tions (AF1.L~ and AF2,LI_I) 

h 2 AFsl m A F  B AF1, T z~F2,T AF1,LH AF2,LH 

~Oo* 0e** Co 0 Qe 0e 0e 

M=20, F=20,  n~=3 
0.0 1.07 1 .05  1 .05  1 .04  1 .04  1 .05  t.03 1.03 
0.1 1.23 1.11 1.11 1 .10  1 .10  1 .13  1 .08  1.11 
0.2 1.33 1 .18  1 .15  1 .17  1 .14  1 .17  1 .12  1.16 
0.4 1.42 1 .31  1 .22  1 .30  1 .21 1 .25  1 .18  1.24 
0.6 1.50 1 .45  1 .26  1 .43  1 .25  1 .32  1 .23  1.31 

M = 20, F = 20, nf = 6 
0.0 1.13 1 .15  1 .15  1 .14  1 .14  1 .14  1 .13  1.13 
0.1 1.44 1 .29  1 .27  1 .27  1 .25  1 .28  1 .22  1.27 
0.2 1.61 1 . 4 2  1 .36  1 .41 1 .34  1 .39  1 .30  1.38 
0.4 1.92 1 .72  1 .69  1 .49  1 .45  1 .58  1 .40  1.57 
0.6 1.98 2.04 1 .57  2 .01  1 .55  1 .70  1 .54  1.68 

M=20, F=40,  n i=3  
0.0 0.83 0 .83  0.83 0 .83  0 .83  0 .83  0.82 0.82 
0.1 0.98 0.88 0.87 0.89 0.88 0.89 0.87 0.89 
0.2 1.10 0 .93  0 .91  0.95 0.92 0.95 0.90 0.95 
0.4 1.18 1 .04  0.96 1 .07  0 .98  1 .03  0 .95  1.01 
0.6 1.23 1 .15  0.99 1 .19  1 .01 1 .08  1 .00  1.07 

M=20, F=40,  n i=6  
0.0 0.88 0 .88  0 .88  0 .88  0 .88  0 .88  0.87 0.87 
0.1 1.17 0 .98  0.97 0 .98  0.97 1.01 0.96 1.00 
0.2 1.30 1 .08  1 .03  1 .09  1 .04  1 .09  1 .02  1.09 
0.4 1.50 1 .30  1 .13  1 .33  1 .15  1 .24  1 .12  1.23 
0.6 1.50 1 .55  1 .19  1 .59  1 .20  1 .29  1 .17  1.28 

M=20, F =  100, n i=3  
0.0 0.71 0.69 0.69 0 .71  0 .71  0.70 0.70 0.70 
0.1 0.82 0 .73  0.72 0.76 0 .75  0.76 0.74 0.75 
0.2 0.94 0.76 0.74 0 .81  0.79 0 .81  0.77 0.81 
0.4 1.05 0 .83  0 .78  0.93 0.84 0.87 0.82 0.87 
0.6 1.02 0 .91  0.80 1 .05  0.87 0 .91  0 .85  0.90 

M=20, F =  100, nf=6 
0.0 0.73 0.72 0.72 0.72 0.72 0 .71  0.70 0.70 
0.1 0.95 0.78 0 .78  0 .81  0.80 0.82 0 .78  0.81 
0.2 1.10 0.85 0.82 0.90 0.86 0.90 0.83 0.90 
0.4 1.24 0.99 0 .88  1 .10  0.94 1 .02  0.92 1.01 
0.6 1.23 1 .15  0 .91  1 .35  0 .99  1 .06  0.96 1.05 

M = 20, F = 200, ny = 3 
0.0 0.66 0 .65  0 .65  0.66 0.66 0.66 0.66 0.66 
0.1 0.82 0 .68  0 .68  0.72 0 .71  0.72 0.70 0.72 
0.2 0.86 0 .71  0.69 0 .77  0.74 0 .78  0 .73  0.74 
0.4 1.00 0.76 0.72 0.89 0.80 0.84 0.79 0.84 
0.6 0.99 0.82 0 .73  1 .02  0.82 0 .87  0 .81  0.86 

M = 20, F = 200, n I = 6 
0.0 0.87 0.67 0.67 0.67 0.67 0.67 0.67 0.67 
0.1 0.87 0.72 0 .71  0 .75  0.74 0 .77  0 .73  0.76 
0.2 1.03 0.77 0.75 0.84 0.80 0.84 0 .78  0.84 
0.4 1.12 0.88 0.79 1 .03  0.87 0.94 0.85 0.94 
0.6 1.19 1 .00  0.82 1 .24  0 .91  0 .99  0.89 0.95 

* Qo using initial genetic variances, covariances and correla- 
tions prior to selection 
** 0e using genetic variances, covarianees and correlations at 
equilibrium 

from the simulations was AFsim, 

1 ~F~m= ~6 ~ v,-Av,_~ 
t=s 1 - A F t - 1  ' 

where F~ is the mean level of inbreeding in generation t 
expected from all possible matings and averaged over 100 
replicates. The s tandard  error  of F~ increased, with t but  
did not  exceed 0.0030 by generat ion 14 for any of the 
examples that are discussed (Table 3). The s tandard  error  
of AFsi m x 100 never exceeded 0.03 for any of the exam- 
ples. AFsi m was compared  to that  expected from theory 
when h2=10  -6  ( random selection) and to results from 
other published simulations (Hill 1985; Verrier 1989) and 
they were found to agree well. 

In Table 3 rates of inbreeding calculated in the simu- 
lations AFsi m, are presented along with the predictions 
calculated from Burrows (1984 a, b) AFt; from a one-gen- 
eration transit ion matr ix approach,  AF1,T; from the two- 
generation transi t ion matrix,  AF2, T; from the Lat ter-Hil l  
one-generat ion Eq. 7, AF1,Ln; and from the two-genera- 
t ion Latter-Hil l  Eq. 8, zJF2,LH. The variances of family 
size required for the Latter-Hil l  equations were calculat- 
ed within the simulation described above. The probabi l i -  
ties of coselection necessary for the one- and two-genera-  
tion transi t ion matrices were calculated as the mean of 
1,000 independent  simulations. 

Under  random section (h 2 = 1 O-6), all methods  of pre- 
dicting rates of inbreeding agree well with each other and 
with AFs~ m. Consider  first the predictions using the equi- 
l ibrium parameters  (Qe). There is generally a very good 
agreement between the one-generat ion predictions AFt, x 
and AFI,Ln and between the two generat ion predict ions 
AF2,LH and AF2.T for these populat ions.  The two-genera- 
tion predictions are always better  than the one-genera- 
t ion predictions, but  both  underest imate the asymptot ic  
rates of inbreeding calculated in the simulation; AFz, x 
underpredicts  AFsi m by 10 -25% ,  and AF2, r underpre-  
dicts AF~,~ by 9 - 1 8 %  in these examples. However,  per- 
haps a more appropr ia te  compar ison is the p ropor t ion  of 
the observed increase in rate of inbreeding in a selected 
over a non selected popula t ion  accounted for the predic- 
tion; AFLT predicts 3 1 - 5 3 %  AF2, T predicts 4 4 - 7 0 %  of 
the total  increase in inbreeding. AF B is slightly superior to 
Al l ,  v when M = F ,  but  becomes considerably inferior as 
F / M  increases, since the different t reatment  of the sexes 
becomes important .  

Rates of inbreeding calculated using Qo in some cases 
appear  superior in predict ing the true rate of inbreeding 
to equivalent predictors  using 0e. This apparent  superior-  
ity is, in fact, coincidental;  the overest imation of family 
correlations by 0o compensates for the incomplete ac- 
count of the inheritance of selective advantage.  Indeed, in 
some cases, rates of inbreeding calculated using ~o o are 
greater than the true rate of inbreeding. 
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Discussion 

The significance of the methods presented in this paper 
may best be discussed by restating the assumptions given 
by Woolliams (1989) required for AFI,T to equal inbreed- 
ing rate (since the methods are closely related, the as- 
sumptions wilt also apply to AFt,Ln and AF1,B): (i) mating 
is carried out at random; (ii) genetic variances and covari- 
ances remain constant; and (iii) selective advantage rela- 
tive to others selected is not inherited. Whilst assumption 
(i) can be satisfied by the breeder, the other two are not, 
and the results show the importance of both of these. 

The importance of assumption (ii) is demonstrated by 
the discrepancy between the examples using initial and 
equilibrium parameters. This discrepancy increases as h z 
increases (mass selection), as would be expected from the 
discrepancy between initial and equilibrium correlations 
among relatives. However, although initial values are 
close to true values for high heritabilities, it is more 
appropriate and natural to use the equilibrium variances 
since, in doing so, assumption (ii) is then satisfied and 
there appears to be a more stable relationship with the 
true inbreeding rate. 

Since assumptions (i) and (ii) are satisfied by parame- 
ters at equilibrium, the difference between the one-gener- 
ation models using these and the simulation values is due 
to breaking assumption (ii), the inheritance of selective 
advantage since by definition AF is a rate independent of 
previous generations in wt/ich genetic variances are equi- 
librating). The difference is still large: for h 2 =0.1, AF1. T 
predicts only 30% of the extra inbreeding over random 
mating, and for h 2 -- 0.6, only 50% of the extra inbreed- 
ing. This trend may be expected from the results of Wray 
and Thompson (1990), who showed that terms describing 
inheritance of selective advantage over many generations 
are functions of (1 - k  h2), i.e. of decreasing magnitude as 
h 2 increases. 

The development of the two-stage methods was made 
in an attempt to introduce the concept of inherited selec- 
tive advantage into the one-generation methods. Never- 
theless, they account for 40-60% of the additional in- 
breeding through selection, giving only a marginal 
improvement. It is possible to conceive of n generation 
methods (AF,) that will converge to AF, however, the 
evidence is that convergence is slow and not obviously 
predictable fromAF 1 and AF 2 . Furthermore, the parame- 
ters required for the estimation of AF, will require either 
extensive simulation or the use of the theory developed 
by Wray and Thompson (1990). It can be shown (data not 
presented) that if their formulae for predicting the addi- 
tional selective advantage from ancestors to descendants 
are forced to zero for descendants born after one or two 
generations, then there is good agreement of the resulting 
estimates of rate of inbreeding with AF1 or AF2, respec- 
tively. This has two consequences: firstly, it confirms the 

cause of the discrepancy between estimates and true rates 
and, secondly, by examining the results from forcing se- 
lective advantage terms to zero after three or more gener- 
ations, it confirms the slow convergence. As a result, it is 
unlikely that further development of one- and two-gener- 
ation methods will be worthwhile. 

Verrier et al. (1990) have recently presented a method 
to predict levels of inbreeding in each generation for pop- 
ulations undergoing selection. The method is an exten- 
sion of the method of Burrows (1984b), but correctly 
accounts for sexual dimorphism. The method is recursive, 
using the level of inbreeding in generation t-I to predict 
the rate of inbreeding in generation t and incorporating 
genetic parameters each generation that account for the 
effects of selection. However, the method is still 'one-gen- 
eration' in the sense that it accounts only for the selective 
advantage of parents to offspring. The asymptotic rate of 
inbreeding calculated from this method is expected to be 
equal to the one-generation transition matrix method 
using 9e- 

The accuracy of these one- or two-generation meth- 
ods may be expected to be better when family indices are 
used rather than mass selection. This is because, in the 
latter case, the correlation between relatives has been 
assumed to be entirely genetic, whereas with family in- 
dices it is in part environmental. Indeed, for low h 2 the 
index correlations of sibs can be principally (but never 
entirely) of environmental origin. If it were entirely envi- 
ronmental, then the methods AF1.LH and AF1, T are ap- 
propriate and unbiased. Thus, there is an a priori case for 
the bias in estimating additional inbreeding due to selec- 
tion to be less when using one- and two-generation meth- 
ods with family indices. Preliminary simulations (N. R. 
Wray, unpublished results) support this. 

An important consideration in the use of the methods 
of this paper is their flexibility in enabling the modelling 
of population structure, including overlapping genera- 
ti0ns. Thus, providing the methods give a reliable 'mea- 
sure' of AF so that the ranking of alternative breeding 
schemes can be evaluated (as they do in the simulations 
presented), the methods will have a role in the planning 
of breeding schemes. 

In conclusion, this paper has reviewed and improved 
various methods for estimating the rate of inbreeding 
under selection. Whilst these methods are biassed and 
thus cannot have the reliability of the recursion of Wray 
and Thompson (1990), they are relatively easy to apply 
and are likely to give the correct ranking of possible 
breeding programmes. Therefore, it is valuable to demon- 
strate the bias with which they predict the asymptotic 
rate of inbreeding. 
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Appendix  I 

Eigenvalues and eigenvectors of gene transition matrices 

Let C(;t) be the characteristic equation of a matrix A of the form 
given in Eq. 6, 

C ( ) - ) = 2 4  q- c3 "~3 q- c2 )u2 q- c1 "~-~-Co, 

where 

1 
C o = ~ ( q  r4+r2 rs+r3 r 6 - q  r6 - r  e r3 - r  4 rs) 

i I 
C 1 = ~ (re r5 -- r 1 r6) q- ~ (rl q- r 6 -- r 3 -- r4) 

C 2 = r 1 r6--r 2 r 5 + ~ r, + ~ r 6 -- 

O+r + 4 
Various properties of 2m, ~ can be shown. Firstly, C(1)> 0 with 
equality if and only if r~ = 1/4, for i = 1 ... 6; furthermore, since 

0Jc 
~ > 0  for 2=1,  for j = l  ... 4, then C(2)>0 for 2>1;  therefore, 

2,,,~ _< 1 should it exist. Secondly, let k = �88 (1 + x/5). C(k)_< 0 with 
equality if and only ifr  3 =r,~=0 (k is the 2m~ ~ for fnll-sib mating). 
Thus, since C(1)_>0 and C(k)<_0, C(2) has at least one root in 
the interval k < 2 ___ 1; therefore, 2 ~  x exists such that k < 2ma x < 1. 

Finally, it needs to be shown that Pro:(0 is itself of O (2m,~). 
Three cases can occur: 

(i) if r 3 , r4>0, then P,,: (t) is a linear combination with posi- 
tive coefficients of the other terms and, since one of these must 
be O ( 2 ~ J ,  so is Pray(0; 

(ii) if r3 = 0, r 4 > 0, then all individuals are from a common 
sire and r I = r s = 0, and the result immediately follows as in (i), 
unless P,.,.(t) alone is O(2max); but this leads to a contradiction, 
since P~( t )  is a positive linear combination of the others; 

(iii) if r4=0, r3>0, then r2=r6=O and the result follows 
from (ii). 

This then establishes that P=:(t) is O(2max) and 2 / ( 3 - x ~  ) 
_< ATe. Equality occurs if r 3 = r 4 = O, which is a standard result for 
full-sib mating. The population size is infinite (it cannot be oth- 
erwise) when all selected individuals are unrelated (r~= 1/4 for 
i = 1 ... 6) in all generations. 

Appendix  II 

Derivation of the two-generation variance of family size method 

The variance of change in gene frequency over two generations, 
V(6q(2) ) can be expressed as the variance of the mean change in 
gene frequency from grandparents of either sex to grandoffspring 
of either sex (~qxr(2)), 

V(~q(z))= E [~(0qmm(2) q_6qmy(2lq_~qfm(a,q_~qff(2,)] ,2 

Expanding this and omiting terms like E [6q,,,~(2) ] [aq:~2) ] which 
are zero, it follows that 

V (~5q~2)) = 1 {E [6.2,.(2)] + E [6q~:~2) ] + 2 E [6qrnrnt2) ] [g)qmf(2)]} 

" 2 ~2 + i6  {E [Oq::{z) ] + E [Oq:,,,(z) ] + 2 E [6q::(2)] [aq:,.(2)]}. (A 1) 

The variance of change in gene frequency is attributable to 
three types of sampling: that due to sampling of genes between 

grandparents (VGP), that due to sampling of genes within het- 
erozygous grandparents (VHGP) and that due to sampling of 
genes within heterozygous parents (VHP). Heterozygous parents 
are generated by the random union of genes from either ho- 
mozygous or heterozygous grandparents, and so VHP is inde- 
pendent of the other terms. Each term in Eq. A 1 has components 
due to VGP, VHGP and VHP. 

The VGP component of each term in Eq. A 1 is analogous 
to the second equation on page 501 of Latter (1959) and with 
a~ = q ( 1 -  q)/2, it follows that 

2 
~ ' ~ 2  , q ( l - q )  qxr(2) 
L lOqxy(2)J = ~ 2 ' 

X #xy(2} 

and, similarly, 

q(1 --q) tr . . . .  y(2) 
E [6q:,m(2)] [~q:,: (2)] = 2 

X #xm(2) ~/xf(2) 

It follows that 

V G P  = q ( l  - q )  1 ~0"2m(2)4-2 ~r . . . .  :,2) ~ 
- 7 5 ~ - -  -}- 2 16 M L#mm(2) #m,~(2) #,~:~2) #2:~2)] 

2 0.2 
+ q ( 1 - q )  1 ra?ry,2)+2 a:",::(2) + ~:"'~'7 

2 16FL .} : , :  , .:=,~,.::<~, .~=,2,_1" 
#.xy(2) c an  be written as the sum of the mean number of grandoff- 
spring of sex y from grandparents of sex x via male offspring 
(#*,.r) and the equivalent via female offspring (#~:y), and is the 
same whether or not selection is taking place�9 

#xy(2) : #xmy -]- # x f y  = #xm(l) #my (1) -t- #xf  (1) #fy(1) 

M Y  F Y  2 Y 
- x  ~ + ~  ~= ~ 

(7 It follows that #~r(2)=4 ~ and 

q(1--q) V 2  , ~ f M ,  ( M ) 2  2 1 v o P =  . . . .  :,2,+ 

q( i - -q )[  2 , ~{/ F'~ F 2 

Next, consider the sampling of genes within heterozygotic 
grandparents (VHGP). The proportion of heterozygotic grand- 
parents is expected to be 2 q ( 1 - q )  and their sampling variance 
is 1/8 : 1/4 from the binomial variance of the sampling of two 
genes multiplied by 1/2, since only half the grandoffspring of a 
given grandparent are expected to receive a gene from that 
grandparent. The genes from heterozygous grandparents are 
sampled to form offspring that are homozygous or heterozygous. 
Each offspring has equal probability of receiving either of the 
two genes from the grandparent and, since they are random 
events, there is no sampling covariance between offspring. The 
sex of the grandparent and the sex of the grandoffspring are 
therefore irrelevant to the sampling variance. The offspring 
genes are then sampled as usual to generate the grandoffspring. 
Each grandoffspring from an offspring family either receives a 
gene from the grandparent in question or it does not; all those 
grandoffspring from a given offspring that receive a gene from 
the grandparent receive the same gene. Therefore, there are ni~y) 
grandoffspring of sex y from offspring i of sex x. The sampling 

X 
covariance summing over all offspring of sex x is ~2 n~]xy), which 

i = l  

must be averaged overall possible covariances n~(xy) . The 
i 
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VHGP component of Eq. A 1 can then be written as: 

VHGP= q_(1-ql L 
4 16 

[ =~1 M M 2 "Lm, Z ",(~)"'("S) Z "'("~S) 
i i=1 i=1 

hi(ram) l~i(mm) l~i(mf) l~i(mm) 
i i i i 

q(1--q) 1 q- 
4 16 

2 2 
hi(f f)  ~ Hi(fro)hi(f f) ~ Fli(fm) 

�9 i i=1 

[- kx ] /  F =i / ~2-~-2 ~ F Q=~I )(---~1 ) "~ (i ==~i ) 2 
i i i= i 

Notice that the terms in Eq. A 1 relate sex of grandparent to sex 
of grandoffspring, but terms in Eq. A2 relate sex of offspring to 
sex of grandoffspring. Therefore, the terms in the two equations 
are not directly analogous. Each term in Eq. A 1 has components 
in several terms in Eq. A2. The terms in Eq. A2 are found to be 
directly dependent on one generation means and variances of 
family size, 

X 2 
2 ,,.~.) ~ ~ F 1 / x ' V  ,~2 17 i= i X [%y (~) + ~xy(1)] 

( )2 = X2 z =L~) ~y,l)+~J 
1'li(xy) #xy(1) 

i=1 

and, similarly, 

X 

The 1IX terms are due to the sampling of heterozygotie off- 
spring. It follows that 

VHGP q(1-q) 1 
4 16M 

M 2 

q(1-q)  1 
4 16F 

�9 2 2 F F 2 

Finally, sampling of heterozygotic parents formed from the 
random union of genes from grandparents is simply the case of 

one generation sampling of heterozygotic parents as, before, 

V H p = 2 q ( 1 - q )  1 2 + 2 q ( l - q )  1 2 
4 16M 4 16F 

_ q ( 1 - q )  + q ( 1 - - q )  

16M 16F 

It follows that since V(cSq(2))=VGP+VHGP+VHP and 
V(gq(2/) = q (1 - q)/Ne, and AF = 1/(2 Ne) (discrete generations 
L = 1), Eq. 8 results. By analogous arguments to Hill (1979), this 
derivation can be shown to hold for the asymptotic rate of 
inbreeding in populations with overlapping generations and, 
hence, each term in Eq. 8 is divided by L. 
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